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Abstract 
The far field acoustic spectra at 90° to the downstream axis of some typical high speed jets are 

calculated from two different forms of Lilley’s equation combined with some recent measurements of the 
relevant turbulent source function. These measurements, which were limited to a single point in a low 
Mach number flow, were extended to other conditions with the aid of a highly developed RANS 
calculation. The results are compared with experimental data over a range of Mach numbers. Both forms 
of the analogy lead to predictions that are in fair agreement with the experimental data at subsonic Mach 
numbers. The agreement is not quite as good at supersonic speeds, but the data appears to be slightly 
contaminated by shock- associated noise in this case.  

1. Introduction 
The acoustic analogy introduced by Lighthill (ref. 1) over 50 years ago remains the principle tool for 

predicting the noise from high speed air jets. In its most general formulation, it amounts to rearranging the 
Navier-Stokes equations into a form that separates out the linear terms and associates them with 
propagation effects that can then be determined as part of the solution. The non-linear terms are treated as 
“known” source functions to be determined by modeling and, in more recent approaches, parameterized 
with the parameters being determined from a steady RANS calculation. The “base” flow (about which the 
linearization is carried out) is usually assumed to be parallel and the resulting equation is usually referred 
to as Lilley’s (ref. 2) equation. 

The major drawback with these approaches is that the unsteady effects, which actually generate the 
sound, must be included as part of the model. This clearly puts severe demands on the modeling aspects 
of the prediction, which usually amount to assuming a functional form for the two point time delayed 
velocity correlation spectra. These predictions should, however, be less sensitive to the details of the 
model when it is possible to neglect variations in retarded time across the source correlation volume. It is 
therefore fortunate that this seems to be a reasonable approximation when performed in an appropriate 
moving frame of reference (ref. 3). The source models are usually tested by comparing them with 
measurements of the far field acoustic spectrum at 90° to the downstream jet axis, which is believed to be 
uninfluenced by propagation effects. The main purpose of this paper is to show that this spectrum can be 
accurately predicted by using an appropriate acoustic analogy approach combined with some 
measurements of the source function that were recently carried out by Harper-Bourne (ref. 4).  
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2. The Acoustic Analogy Equation and its Far-Field Solution 
Reference 5 shows that the Navier-Stokes equations can be rewritten (for an ideal gas) as the 

linearized Navier-Stokes (LNS) equations about a very general “base flow” but with different (in general 
non-linear) dependent variables, with the heat flux vector replaced by a generalized enthalpy flux and 
with the viscous stresses replaced by a generalized Reynolds stress. This is a true acoustic analogy (in the 
Lighthill (ref. 1) sense) in that it shows that there is an exact analogy between the flow fluctuations in any 
real flow and the linear fluctuations about a very general “base flow” due to an externally imposed 
“viscous” stress and “heat flux” vector. 

When the “base” flow is taken to be the unidirectional transversely sheared mean flow 
 
 ( ) ( )1 2 3 2 3, , , , constanti iv U x x x x p p= δ ρ = ρ = =  (1) 

 
where x ={ }1 2 3, ,x x x is a Cartesian coordinate system, v = { }1 2 3, ,v v v denotes the velocity, p the pressure 
and ρ the density, the resulting LNS equations can be combined to obtain the modified Lilley’s (ref. 1) 
equation 
 

 ( )
2

2 2
21

2 1ij
e

i i j

eD U DLp c c Q
Dt x x x x Dt

′∂⎛ ⎞∂ ∂ ∂′ = − − γ −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (2)  

 
where 
 

  
2

2 2
2 1

2
i i j j

D D UL c c
Dt x x x x xDt

⎛ ⎞∂ ∂ ∂ ∂ ∂
≡ − −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

   (3) 

 
is the variable-density Pridmore-Brown (ref. 17) operator 
 
  ( )2 2 3,c p x x≡ γ ρ   (4) 
 
is the square of the mean-flow sound speed, γ = the specific heat ratio, t denotes the time, 
 

 
1

D U
Dt t x

∂ ∂
≡ +
∂ ∂

 (5) 

 
denotes the convective derivative based on U. The dependent variable ep′  and source strengths ije′  and Q 
are given by 
 

 21
2ep p vγ −′ ′ ′≡ + ρ   (6a) 

 
and  
 

  21
2ij i j ij ije v v vγ −′ ′ ′ ′≡ −ρ + δ ρ + σ   (7a) 
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  1j i
j j

UQ e
x x
∂ ∂′ ′≡ η +
∂ ∂

  (8a) 

 
where 
 

 0i i i ij jv h q v′ ′ ′ ′η ≡ −ρ − + σ   (9) 
 
when the limiting form of the general equations are used directly. Here  
 

 1i i iv v U′ ≡ − δ   (10) 
 

  21
2oh h v′ ′ ′≡ +   (11) 

 

and 
2

1
ch h′ ≡ −
γ −

, 
2

0 2
vh h
′

′ ′≡ + , with h being the enthalpy. The viscous stress and heat flux vector, ijσ  

and qi respectively, are believed to play a negligible role in the sound generation process and will 
therefore be neglected in the following.  

But the limiting form of the equations can also be rearranged to obtain a simpler result (ref. 19), 
which amounts to replacing the dependent variable ep′  and source strengths ije′  and Q by 

 
 ep p′ ′≡   (6b) 
 
  ij i je v v′ ′ ′≡ −ρ   (7b) 
 

and  
 

  j j
j j

pQ v h v
x x

′∂∂ ′ ′ ′≡ − ρ +
∂ ∂

  (8b) 

 
in the inviscid limit. These results are exact consequences of the Navier-Stokes (inviscid Navier-Stokes) 
equations, but it is frequently argued that the fluctuating enthalpy flux i′η ,which appears in the first 
formulation (and correspond to the isentropic part of the pressure density source in the Lighthill approach 
(ref. 1)) is only important for hot jets (refs. 2, 6 to 8) except, perhaps, at small angles to the downstream 
jet axis (ref. 9) Similar arguments would suggest that the enthalpy fluctuation term that appears in the 
second formulation is also unimportant in cold jets and since it can be shown that the ideal gas law 
implies  
 

 21p h c
′γ − ρ′ ′= ρ +

γ γ
 (12) 

 
it would seem that the second member in (8b) would also be negligible as well. We therefore neglect 
these terms in the present study. The main difference between these two formulations is then the dipole-

like term 
i

U
x
∂
∂

( )
2

12
1 i

D e
Dt

′γ −  that appears in the first formulation, but not in the second. Since both 
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formulations are initially exact consequences of the Navier-Stokes (inviscid Navier-Stokes) equations, 
any differences in the resulting acoustic predictions must be attributable to the introduction of these 
approximations and this research was initially undertaken as an attempt to distinguish between the two. 

In either case, the generalized Lilley’s equation can be solved (ref. 10) in terms of the free space 
Greens’ function (ref. 18) ( ),G t τx y, , which satisfies 

  
 ( ) ( ) ( ),LG t tτ = δ − δ − τx y, x y   (13) 

 
and has outgoing wave behavior at infinity, to obtain the following expression 
  

 ( ) ( ) ( )2 ˆ, ; , ; ,M
ijkl c ijkl

V

p t U τ t τ R τ d d dτ
∞

−∞

= γ +∫ ∫∫x x y y y ξξ + ξi   (14) 

 
for the pressure autocovariance (ref. 22) (notice that the ep ′  in the first formulation reduces to p′ in the 
far field) 
 

 ( ) ( ) ( )2 0 0 0
1, , ,

2

T

e e
T

p t p t p t t dt
T

−

′ ′≡ +∫x x x   (15) 

 
where V denotes integration over all space, T denotes some large but finite time interval. 

   

 ( ) ( ) ( )1 1 1, , , ,ijkl ij klt t t t dt
∞

−∞

γ + τ ≡ γ + + τ γ +∫ ηx y;η x y x y  (16) 

 
where the propagation factor ( ),kl tγ x y is defined in reference 10. ( ); ,M

ijklR τy ξ  is a moving frame 

correlation tensor, which is defined in terms of the fixed frame density-weighted, fourth-order, two-point, 
time-delayed fluctuating velocity correlation (with the indicated arguments referring to all three terms 
preceding the parentheses) 
 

 ( ) ( ) ( )0 0 0
1; , , ,

2

T

ijkl i j k l
T

R τ v v v v τ τ d
T

−

′ ′ ′ ′≡ ρ τ ρ + + τ∫y y yη η  (17) 

 
and the second order fixed frame density weighted correlation 
 

 ( ) ( ) ( )0 0 0
1; , ,

2

T

ij i j
T

R v v d
T

−

′ ′τ ≡ ρ τ ρ + τ + τ τ∫y y, yη η  (18) 

 
by 

 ( ) ( ) ( ) ( )ˆ ˆ; , ; , ; , 0 ; , 0M
0 ijkl c ij kl cijklR τ R U τ τ R R U τ≡ −y y y y +ξ ξ + ξ +i 0 i 0  (19) 

 
where  
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 ˆ cU τ≡ −ξ η i   (20) 
 
denotes a moving frame coordinate system, with Uc being the convection velocity of the turbulence. 

Our interest is in the far field spectrum 
 

  ( ) ( )21 ,
2

i tI e p t dt
∞

ω
ω

−∞

≡
π ∫x x   (21) 

 
which can be calculated by taking the Fourier transform of eq. (14) and using the convolution theorem 
(ref. 18) to obtain 

  

  ( ) ( ) ( ) ( )* ˆ2 ; ; , ,Mi τ
ij kl c ijkl

V

I U τ e R τ d dτ
∞

− ω
ω

−∞

= π Γ ω Γ + + ω∫ ∫x y x y x y i yξ ξ ξ   (22) 

 
where 

  

  ( ) ( ) ( )1 ,
2

i t
ij ije t d tω −τ

−∞

Γ ≡ γ − τ − τ
π ∫ x y   (23) 

 
is the Fourier transform of γij (we use capital letters to denote Fourier transform of the corresponding 
lower case quantity) and we introduced Iω(x⎪y),the acoustic spectrum at x due to a unit volume of 
turbulence at y, i.e., 
 

 ( ) ( )
V

I I dω ω= ∫x x y y  (24)  

 
in order to simplify the formulas. The relevant far field expansion of Γij is given in reference 10. 

The only approximations made up to this point is the neglect of the enthalpy and viscous source 
terms, but equation (22) will depend on the turbulent source correlations only through 

  
 ( ) ( ), , ,M

ijkl ijkl
V

R dτ ≡ τ∫y y ξξR   (25) 

 
if variations in retarded time across the correlation volume are neglected, i.e., if ( )ˆ ;ckl U∗Γ + + τ ωx y iξ  is 

assumed to be constant over the correlation volume (ref. 3). However, the definitions (15) and (19) imply 
that the integration variable in equation (25) can be changed back to η, which means that 

  
 ( ) ( ) ( ) ( ), , , ; , 0 ; , 0ijkl ijkl ij kl

V

R R R d⎡ ⎤τ ≡ τ −⎣ ⎦∫y y y y +η η0 0R η  (26) 

 
Equation (22) can now be written more simply as 
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 ( ) ( ) ( ) ( )( )
22 2 sin * 1 cos

as 

ij ijkl cklI M
x c

x

∗
ω ⊥ ⊥

∞

π πω⎛ ⎞→ θ Γ Γ Φ ω − θ⎜ ⎟
⎝ ⎠

→∞

x y x y x y y;   (27) 

 
where 
 

 ( ) ( )1, ,
2

i
ijkl ijkle d

∞
ωτ

−∞

Φ ω ≡ τ τ
π ∫y yR   (28) 

 
is the spectral tensor of the source correlation and  
 

 cc
UM c∞

≡   (29) 

 
is the convective Mach number of the turbulence. This result shows that it is only necessary to model the 
overall spectral tensor itself and not the detailed two-point time delayed correlations of the turbulence. 
However, the radiated sound should still be relatively insensitive to the detailed turbulence structure even 
when the latter quantities are modeled (as is at least partially done below). This would not be the case if 
the moving frame had not been introduced before neglecting the retarded time variations (ref. 3). 

For reasons given in the introduction, our interest here is in the spectrum at 90° to the jet axis where 
cosθ = 0.We only carry out the analysis for the first formulation and simply give the final result for the 
second ( for reasons that will become clear when that is actually done ). Reference 10 shows that 

 

 
( ) ( )

( )
( )

( ) ( )

4
1

2 2 2

1

11 1
2 24

1
for = 2.

ijkl

i j i k l
ij kl

j

k
l

x xc i x xUI
yx xx

i U
y

∞
ω

∗

⎤ω γ − δ⎡ γ − ∂ γ −⎡= − δ + − δ⎥⎢ ⎢ω ∂ ⎣⎥π ⎣ ⎦

γ − ⎤∂
− δ Φ ω θ π⎥ω ∂ ⎦

x y

y;

  (30) 

 
when 2 2

0  c  o  nstantc c∞= = , i.e., in the isothermal case. 

3. The Quasi-Normal and Axisymmetric Turbulence Approximations 
To proceed further, we need to know something about the source spectral tensor Φijkl.. The usual 

approach (refs. 12, 13, and 3) is to begin by assuming that the turbulence is quasi-normal (ref. 16) (see  
ref. 10) in order to obtain some relations among its components. It then follows that (see comments 
preceding equation (20)) 
 

 
( ) ( ) ( ) ( ) ( )
( ) ( )

, , ; , 0 ; , 0 ; , ; ,

; , ; ,
ijkl ij kl ik jl

il jk

R R R R R

R R

τ − = τ τ

+ τ τ

y y y + η y y

y y

0 0 η η

η η

η
  (31) 

 
To further reduce the number of independent components it is usual to assume some kinematically 

possible symmetric form for the second order correlations. Early studies (ref. 20) assumed the turbulence 
to be isotropic, but that turns out to be incompatible with the Harper-Bourne (ref. 17) measurements (to 
be introduced below). The simplest assumption compatible with his results is the one introduced in 
references 12 and 13, namely that the turbulence is axisymmetric, which implies that (ref. 16) 
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 ( ) ( )0 0 0 1 1 0 1 1; ,ij i j ij i j j j j iR A B C Dτ = η η + δ + δ δ + δ η + δ ηy η   (32) 

 
where A0, B0, C0, and D0 are functions of y, τ0, and η⊥; A0, B0, and C0 are even functions η⊥ and D0 is an 
odd function of this quantity. This model is chosen because it is the most general of those whose 
mathematical properties have been studied in the literature and because it reflects the fact that the cross 
flow velocity components tend to be much more similar to one another than to the stream-wise 
component—even for non-axysymmetric flows. Inserting equation (32) into equation (31) and inserting 
the result into equation (30) via equations (28) and (26) yields (after a straight forward but tedious 
calculation that follows along the lines of the one in appendix A of reference 12) 

  

 ( ) ( ) ( ) ( )
4 22

2
1 2 3 4

14 2 1 1
2

I x M
c cω
∞ ∞

⎡ ⎤⎛ ⎞ ⎡ ⎤ω γ − ω⎛ ⎞⎜ π = Φ − γ − Φ + Φ + γ − ∇ Φ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
x y   (33)  

 
where 

 

  ( )2
1 22

1 , ,
2

i

V

e R d d
∞

− ωτ

−∞

Φ ≡ τ τ
π ∫ ∫ y η η   (34a) 

 

 ( )2 2 2
2 23 12 22

1
2

i

V

e R R R d d
∞

− ωτ

−∞

Φ ≡ + + τ
π ∫ ∫ η   (34b)  

  

 ( )2 2 2 2
3 12 23 11 22

1 4 2 2
2

i

V

e R R R R d d
∞

− ωτ

−∞

Φ ≡ + + + τ
π ∫ ∫ η   (34c)  

 
and 
 

 ( )2
4 12 11 22

1
2

i

V

e R R R d d
∞

− ωτ

−∞

Φ ≡ + τ
π ∫ ∫ η  (34d) 

 
are seemingly independent spectral functions. However, when compressibility effects are neglected (i.e., 
when ρ is treated as a constant) the coefficients A0, B0, C0, and D0 are not all independent, but can be 
expressed in terms of two independent scalar functions of y, τ0, η⊥, and η1, say a and b (refs. 14 to 16), 
which scale like 
 

 ( )2 2
11 , / 2b u B L⊥ ⊥= ρ η η  (35) 

 
and 

   
  ( )2

121 1 ,g a b u Dη η ⊥≡ − = ρ η η   (36) 

 
where 
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 1 1 1/ Lη η≡   (37) 

 
 / L⊥ ⊥ ⊥η η≡   (38) 

 
L1 and L⊥ denote characteristic stream-wise and transverse length scales of the turbulence, and B and D 
are O(1) functions of the indicated arguments. 

Turbulence measurements suggest  
  

 
14

L
L
⊥ε ≡   (39) 

 
ought to be small. In fact, Harper-Bourne’s (ref. 17) measurements (to be discussed below) suggest that 

22.7 10−ε × .  
Reference 10 shows that 
 

 
( )

( ) ( )
21 2 2 12 2

2 2 2 2 01 11 1

4
3

2 2

i Dr e d d d
L L u L L u

∞ ∞ ∞
− ωτ

⊥ ⊥ ⊥
⊥−∞ −∞⊥ ⊥

Φ ⎛ ⎞Φ ∂
= = η η η η τ⎜ ⎟∂η⎝ ⎠π ρ π ρ

∫ ∫ ∫  (40a,b) 

 

 

( )
223 2 12

2 2 01 1

2
2

i B De r d d d
8L L u

∞ ∞ ∞
−ωτ

⊥ ⊥ ⊥
⊥−∞ −∞⊥

⎤⎡ ⎛ ⎞Φ ∂ ⎥= + η η η η τ⎜ ⎟⎢ ∂η ⎥⎝ ⎠⎣ ⎦π ρ
∫ ∫ ∫   (40c) 

 

 

( )
4 2

12
2 2 01 1

22

ir e B D d d d
L L u

∞ ∞ ∞
− ωτ

⊥ ⊥
⊥−∞ −∞⊥

⎛ ⎞Φ ∂
= η η η τ⎜ ⎟∂η⎝ ⎠π ρ

∫ ∫ ∫  (40d) 

 
when O(ε2) terms are neglected-the ratio r is defined by 
 

 2 2
2 1r u u≡ ρ ρ   (41) 

 
Lacking any specific data to the contrary, it seems reasonable to suppose that 
 

 ( )22
022

1( ) , , /i

V

r e R d d
∞

− ωτ

−∞

Γ = τ τ Φ
π ∫ ∫ y η η   (42) 

 
where 
 

  ( ) ( )2
0 011

1 , , , ,i

V V

e R d d H d
∞

− ωτ

−∞

Φ ≡ τ τ = τ
π ∫ ∫ ∫y yη η η η   (43) 
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is a constant, i.e., independent of ω and source location y. Equation (31) then becomes 
 

 ( ) ( ) ( ) ( )
2

22 2 2
02 ,oI xc C U

cω ∞
∞

⎛ ⎞ω ⎡ ⎤⏐ π = Φ ω ω + κ ∇⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
x y y   (44)  

 
where 

 

 ( )
2 2

2 2
0

2 3 1 1 12 ( ) 1 2
3 4 2 2 2

C r
⎤γ − γ −⎡ ⎛ ⎞ ⎛ ⎞≡ Γ − γ − + +⎥⎜ ⎟ ⎜ ⎟⎢⎣ ⎝ ⎠ ⎝ ⎠⎥⎦

 (45) 

 
is a constant and 

 

 

0

0

2
1

0

0 2 1
0

2
1 1

2

i

i

r e B D d d d

C
e B d d d

∞ ∞ ∞
− ωτ

⊥ ⊥
⊥−∞ −∞

∞ ∞ ∞
− ωτ

⊥ ⊥
−∞ −∞

⎛ ⎞∂
η η η τ⎜ ⎟∂η⎝ ⎠γ −⎛ ⎞κ ≡ ⎜ ⎟

⎝ ⎠
η η η τ

∫ ∫ ∫

∫ ∫ ∫
  (46) 
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